循环神经网络pytorch实现

简介

使用pytorch简单使用循环神经网络(RNN、GRU、LSTM)

RNN

RNN
前向过程:

  • $h_t = g(Uh_{t-1} + Wx_t +b_h)$
  • $y_t = g(W_yh_t + b_y)$

pytorch 实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import torch.nn.functional as F


class RNNCell(nn.Module):

def __init__(self, input_size, hidden_dim):
super(RNNCell, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.linear1 = nn.Linear(hidden_dim, hidden_dim)
self.linear2 = nn.Linear(input_size, hidden_dim)

def forward(self, x, h_pre):
"""
:param x: (batch, input_size)
:param h_pre: (batch, hidden_dim)
:return: h_next (batch, hidden_dim)
"""
h_next = torch.tanh(self.linear1(h_pre) + self.linear2(x))
return h_next


class RNN(nn.Module):

def __init__(self, input_size, hidden_dim):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.rnn_cell = RNNCell(input_size, hidden_dim)

def forward(self, x):
"""
:param x: (seq_len, batch,input_size)
:return:
output (seq_len, batch, hidden_dim)
h_n (1, batch, hidden_dim)
"""
seq_len, batch, _ = x.shape
h = torch.zeros(batch, self.hidden_dim)
output = torch.zeros(seq_len, batch, self.hidden_dim)
for i in range(seq_len):
inp = x[i, :, :]
h = self.rnn_cell(inp, h)
output[i, :, :] = h

h_n = output[-1:, :, :]
return output, h_n

LSTM

LSTM
前向过程:

  • 输入门: $i_t = \sigma (W_ix_t + U_ih_{t-1} + b_i)$
  • 遗忘门: $f_t = \sigma (W_fx_t + U_fh_{t-1} + b_f)$
  • 输出门: $o_t = \sigma (W_ox_t + U_oh_{t-1} + b_o)$
  • $\hat{c}t = tanh(W_cx_t + U_ch{t-1} + b_c)$
  • $c_t = f_t \odot c_{t-1} + i_t \odot \hat{c} _t$
  • $h_t = o_t \odot tanh(c_t)$

pytorch 实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy


class Gate(nn.Module):
def __init__(self, input_size, hidden_dim):
super(Gate, self).__init__()
self.linear1 = nn.Linear(hidden_dim, hidden_dim)
self.linear2 = nn.Linear(input_size, hidden_dim)

def forward(self, x, h_pre, active_func):
h_next = active_func(self.linear1(h_pre) + self.linear2(x))
return h_next


def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])


class LSTMCell(nn.Module):

def __init__(self, input_size, hidden_dim):
super(LSTMCell, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.gate = clones(Gate(input_size, hidden_dim), 4)

def forward(self, x, h_pre, c_pre):
"""
:param x: (batch, input_size)
:param h_pre: (batch, hidden_dim)
:param c_pre: (batch, hidden_dim)
:return: h_next(batch, hidden_dim), c_next(batch, hidden_dim)
"""
f_t = self.gate[0](x, h_pre, torch.sigmoid)
i_t = self.gate[1](x, h_pre, torch.sigmoid)
g_t = self.gate[2](x, h_pre, torch.tanh)
o_t = self.gate[3](x, h_pre, torch.sigmoid)
c_next = f_t * c_pre + i_t * g_t
h_next = o_t * torch.tanh(c_next)

return h_next, c_next


class LSTM(nn.Module):

def __init__(self, input_size, hidden_dim):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_dim = hidden_dim
self.lstm_cell = LSTMCell(input_size, hidden_dim)

def forward(self, x):
"""
:param x: (seq_len, batch,input_size)
:return:
output (seq_len, batch, hidden_dim)
h_n (1, batch, hidden_dim)
c_n (1, batch, hidden_dim)
"""
seq_len, batch, _ = x.shape
h = torch.zeros(batch, self.hidden_dim)
c = torch.zeros(batch, self.hidden_dim)
output = torch.zeros(seq_len, batch, self.hidden_dim)
for i in range(seq_len):
inp = x[i, :, :]
h, c = self.lstm_cell(inp, h, c)
output[i, :, :] = h

h_n = output[-1:, :, :]
return output, (h_n, c.unsqueeze(0))

GRU

GRU
前向过程:

更新门:

  • $r_t = \sigma (W_{xr}x_t + W_{hr}h_{t-1} + b_r)$
  • $z_t = \sigma (W_{xz}x_t + W_{hz}h_{t-1} + b_z)$

候选隐含状态:

  • $\hat{h}t = tanh(W{xh}x_t + r_t \odot W_{hh}h_{t-1} + b_h)$

隐含状态:

  • $h_t = z_t \odot h_{t-1} + (1-z_t) \odot \hat{h}_t$

输出:

  • $y_t = softmax(W_{hy}h_t + b_y)$